Issue 39, 2018

DNA-encircled lipid bilayers

Abstract

Lipid bilayers and lipid-associated proteins play crucial roles in biology. As in vivo studies and manipulation are inherently difficult, membrane-mimetic systems are useful for the investigation of lipidic phases, lipid–protein interactions, membrane protein function and membrane structure in vitro. In this work, we describe a route to leverage the programmability of DNA nanotechnology and create DNA-encircled bilayers (DEBs). DEBs are made of multiple copies of an alkylated oligonucleotide hybridized to a single-stranded minicircle, in which up to two alkyl chains per helical turn point to the inside of the toroidal DNA ring. When phospholipids are added, a bilayer is observed to self-assemble within the ring such that the alkyl chains of the oligonucleotides stabilize the hydrophobic rim of the bilayer to prevent formation of vesicles and support thermotropic lipid phase transitions. The DEBs are completely free of protein and can be synthesized from commercially available components using routine equipment. The diameter of DEBs can be varied in a predictable manner. The well-established toolbox from structural DNA nanotechnology, will ultimately enable the rational design of DEBs so that their size, shape or functionalization can be adapted to the specific needs of biophysical investigations of lipidic phases and the properties of membrane proteins embedded into DEB nanoparticle bilayers.

Graphical abstract: DNA-encircled lipid bilayers

Supplementary files

Article information

Article type
Communication
Submitted
13 Aug 2018
Accepted
18 Sep 2018
First published
24 Sep 2018

Nanoscale, 2018,10, 18463-18467

DNA-encircled lipid bilayers

K. Iric, M. Subramanian, J. Oertel, N. P. Agarwal, M. Matthies, X. Periole, T. P. Sakmar, T. Huber, K. Fahmy and T. L. Schmidt, Nanoscale, 2018, 10, 18463 DOI: 10.1039/C8NR06505E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements