Issue 22, 2018

Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition

Abstract

This paper presents a heteroatom doping strategy to manipulate the structure of graphene-based photocatalysts for effective hydrogen production from aqueous solution. Oxygenation of graphene creates a bandgap to produce semiconducting graphene oxide, nitrogen doping extends the resonant π-conjugation to prolong the charge lifetime, and sulfur doping breaks the electron neutrality to facilitate charge transfer. Accordingly, ammonia-treated sulfur–nitrogen-co-doped graphene oxide dots (A-SNGODs) are synthesized by annealing graphene oxide sheets in sulfur-ammonia, oxidizing the sheets into dots, and then hydrothermally treating the dots in ammonia. The A-SNGODs exhibit a high nitrogen content in terms of quaternary and amide groups that are formed through sulfur-mediated reactions. The peripheral amide facilitates orbital conjugations to enhance the photocatalytic activity, whereas the quaternary nitrogen patches vacancy defects to improve stability. The simultaneous presence of electron-withdrawing S and electron-donating N atoms in the A-SNGODs facilitates charge separation and results in reactive electrons. When suspended in an aqueous triethanolamine solution, Pt-deposited A-SNGODs demonstrate a hydrogen-evolution quantum yield of 29% under monochromatic 420 nm irradiation. The A-SNGODs exhibit little activity decay under 6-day visible-light irradiation. This study demonstrates the excellence of the heteroatom-doping strategy in producing stable and active graphene-based materials for photoenergy conversion.

Graphical abstract: Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2018
Accepted
04 May 2018
First published
05 May 2018

Nanoscale, 2018,10, 10721-10730

Electronic structure manipulation of graphene dots for effective hydrogen evolution from photocatalytic water decomposition

B. Nguyen, Y. Xiao, C. Shih, V. Nguyen, W. Chou and H. Teng, Nanoscale, 2018, 10, 10721 DOI: 10.1039/C8NR02441C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements