Jump to main content
Jump to site search

Issue 33, 2018
Previous Article Next Article

Single-imprint moth-eye anti-reflective and self-cleaning film with enhanced resistance

Author affiliations

Abstract

Antireflective transparent materials are essential for a myriad of applications to allow for clear vision and efficient light transmission. Despite the advances, efficient and low cost solutions to clean antireflective surfaces have remained elusive. Here, we present a practical approach that enables the production of antireflective polymer surfaces based on moth-eye inspired features incorporating photoinduced self-cleaning properties and enhanced mechanical resistance. The methodology involves the fabrication of sub-wavelength moth-eye nanofeatures onto transparent surface composite films in a combined processing step of nanoparticle coating and surface nanoimprinting. The resulting surfaces reduced the optical reflection losses from values of 9% of typical PMMA plastic films to an optimum value of 0.6% in the case of double-sided moth-eye nanoimprinted films. The composite moth-eye topography also showed an improved stiffness and scratch resistance. This technology represents a significant advancement not limited by scale, for the development of antireflective films for low cost application products.

Graphical abstract: Single-imprint moth-eye anti-reflective and self-cleaning film with enhanced resistance

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 Mar 2018, accepted on 02 May 2018 and first published on 01 Jun 2018


Article type: Paper
DOI: 10.1039/C8NR02386G
Citation: Nanoscale, 2018,10, 15496-15504
  • Open access: Creative Commons BY license
  •   Request permissions

    Single-imprint moth-eye anti-reflective and self-cleaning film with enhanced resistance

    I. Navarro-Baena, A. Jacobo-Martín, J. J. Hernández, J. R. Castro Smirnov, F. Viela, M. A. Monclús, M. R. Osorio, J. M. Molina-Aldareguia and I. Rodríguez, Nanoscale, 2018, 10, 15496
    DOI: 10.1039/C8NR02386G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements