Issue 22, 2018

Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy

Abstract

Multi-modal imaging-guided photothermal therapy (PTT) has aroused extensive attention in biomedical research recently because it can provide more comprehensive information for accurate diagnosis and treatment. In this research, the manganese ion chelated endogenous biopolymer melanin nanoparticles were successfully prepared for magnetic resonance (MR)/photoacoustic (PA) dual-modal imaging-guided PTT. The obtained nanoparticles with an ultrasmall size of about 3.2 nm exhibited negligible cytotoxicity, high relaxivity for MRI, an excellent photothermal effect and PA activity. Moreover, in vivo MRI and PAI results all demonstrated that the nanoparticles began to diffuse in the blood after intratumoral injection into tumor-bearing mice and could spread throughout the whole tumor region at 3 h, indicating the optimal treatment time. The subsequent photothermal therapy of cancer cells in vivo was carried out and the result showed that tumor growth could be effectively inhibited without inducing any observed side effects. Besides, melanin as an endogenous biopolymer has native biocompatibility and biodegradability, and it can be excreted through both renal and hepatobiliary pathways after treatment. Therefore, the melanin-Mn nanoparticles may assist in better indicating the optimal treatment time, monitoring the therapeutic process and enhancing the therapeutic effect and showed great clinical translation potential for cancer diagnosis and therapy.

Graphical abstract: Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2018
Accepted
26 Apr 2018
First published
01 May 2018

Nanoscale, 2018,10, 10584-10595

Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy

J. Sun, W. Xu, L. Li, B. Fan, X. Peng, B. Qu, L. Wang, T. Li, S. Li and R. Zhang, Nanoscale, 2018, 10, 10584 DOI: 10.1039/C8NR01215F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements