Issue 8, 2018

Single crystal diamond membranes for nanoelectronics

Abstract

Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p–n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.

Graphical abstract: Single crystal diamond membranes for nanoelectronics

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2017
Accepted
18 Jan 2018
First published
30 Jan 2018

Nanoscale, 2018,10, 4028-4035

Single crystal diamond membranes for nanoelectronics

K. Bray, H. Kato, R. Previdi, R. Sandstrom, K. Ganesan, M. Ogura, T. Makino, S. Yamasaki, A. P. Magyar, M. Toth and I. Aharonovich, Nanoscale, 2018, 10, 4028 DOI: 10.1039/C7NR09097H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements