Issue 21, 2018

Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo3S4 cluster and its effect on hydrogenation catalysis

Abstract

Ligand-exchange reactions of [Mo3S4(tu)8(H2O)]Cl4·4H2O (tu = thiourea) with (PhCH2CH2)2PCH2CH2SR ligands, where R = Ph (PS1), pentyl (PS2) or Pr (PS3), afford new complexes isolated as [Mo3S4Cl3(PS1)3]PF6 ([1]PF6), [Mo3S4Cl3(PS2)3]PF6 ([2]PF6) and [Mo3S4Cl3(PS3)3]PF6 ([3]PF6) salts in 30–50% yields as the major reaction products. The crystal structures of [1]PF6 and [2]PF6 were determined by X-ray diffraction (XRD) analysis. Each of the three phosphine-thioether ligands is coordinated in a bidentate chelating mode to a different molybdenum atom of the Mo3S4 trinuclear cluster; herein, all the phosphorus atoms of the phosphino-thioether ligand are located trans to the capping sulfur (μ3-S). A second product that forms in the reaction of [Mo3S4(tu)8(H2O)]Cl4·4H2O with PS1 corresponds to the neutral [Mo3S4Cl4(PS1)2(PS1*)] complex. Its XRD analysis reveals both bidentate (PS1) and monodentate (PS1*) coordinating modes of the same ligand. In the latter mode the phosphine-thioether is coordinated to a Mo atom only via the P atom. All compounds were characterized using 1H and 31P{1H} NMR spectroscopy, electrospray-ionization (ESI) mass spectrometry and cyclic voltammetry (CV). Reactions of [1]PF6, [2]PF6 and [3]PF6 with an excess of Bu4NCl in CD2Cl2 were followed by 31P{1H} NMR spectroscopy. The spectra indicate equilibrium between cationic [Mo3S4Cl3(PSn)3]+ and neutral [Mo3S4Cl4(PSn)2(PSn*)] (n = 1, 2) species. The equilibrium constants were determined as 2.5 ± 0.2 × 103 M−1, 43 ± 2 M−1 and 30 ± 2 M−1 (at 25 °C) for [1]PF6, [2]PF6 and [3]PF6, respectively, indicating quantitative differences in the hemilabile behaviors of the phosphino-thioether ligands, depending on the substituent at the sulfur. Clusters [1]PF6, [2]PF6 and [3]PF6 were tested as catalysts in the reduction of nitrobenzene to aniline with Ph2SiH2 under mild conditions. Significant differences in the catalytic activities were observed, which can be attributed to different hemilabile behaviors of the PS1 and PS2/PS3 ligands.

Graphical abstract: Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo3S4 cluster and its effect on hydrogenation catalysis

Supplementary files

Article information

Article type
Paper
Submitted
25 Jul 2018
Accepted
27 Sep 2018
First published
03 Oct 2018

New J. Chem., 2018,42, 17708-17717

Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo3S4 cluster and its effect on hydrogenation catalysis

A. L. Gushchin, N. Y. Shmelev, S. F. Malysheva, A. V. Artem’ev, N. A. Belogorlova, P. A. Abramov, N. B. Kompan’kov, E. Manoury, R. Poli, D. G. Sheven, R. Llusar and M. N. Sokolov, New J. Chem., 2018, 42, 17708 DOI: 10.1039/C8NJ03720E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements