Issue 4, 2018

Azasilicon-bridged heterocyclic arylamines: syntheses, structures and photophysical properties

Abstract

The lithium κ1-enamides, Me2NSiMe2CHC(Ph)-{2,6-(R1)2-4-(R2)C6H2}NLi·3THF (R1 = iPr, R2 = H L1; R1 = Et, R2 = H L2; R1 = Me, R2 = H L3; R1 = R2 = Me L4; R1 = Et, R2 = Me L5), in the presence of titanium tetrachloride, undergo intermolecular rearrangement cyclization reactions resulting in 1,3-migration of the silicon groups and the elimination of dimethylamine affording five examples of bis-azasilicon-bridged heterocyclic arylamines, [{2,6-(R1)2-4-(R2)C6H2}N(Ph)CCSiMe2]2 (R1 = iPr, R2 = H D1; R1 = Et, R2 = H D2; R1 = Me, R2 = H D3; R1 = R2 = Me D4; R1 = Et, R2 = Me D5) in good yield, respectively. The molecular structures of D1–D5 show the two fused N–Si–C–C–C rings to be co-planar indicative of extended π-conjugation, while their photophysical properties reveal them to be green/blue emitting with high luminescence quantum yields (ΦF range: 75–99%). Furthermore, the compounds D serve as versatile reactants undergoing ring opening on hydrolysis to afford the saturated 1,4-diimines [{2,6-(R1)2-4-(R2)C6H2}N(Ph)C-CH2]2 (R1 = iPr, R2 = H E1; R1 = Et, R2 = H E2; R1 = Me, R2 = H E3; R1 = R2 = Me E4; R1 = Et, R2 = Me E5). Alternatively, D can be employed in a redox-promoted cascade reaction to afford the conjugated 1,4-diimines, (E)-[{2,6-(R1)2-4-(R2)C6H2}N[double bond, length as m-dash]C(Ph)CH]2 (R1 = iPr, R2 = H F1; R1 = Et, R2 = H F2; R1 = Me, R2 = H F3; R1 = R2 = Me F4; R1 = Et, R2 = Me F5). In addition to D1–D5, E1–E3, E5, F2 and F3 have been the subject of single crystal X-ray diffraction studies.

Graphical abstract: Azasilicon-bridged heterocyclic arylamines: syntheses, structures and photophysical properties

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2017
Accepted
15 Jan 2018
First published
15 Jan 2018

New J. Chem., 2018,42, 3102-3111

Azasilicon-bridged heterocyclic arylamines: syntheses, structures and photophysical properties

S. Yuan, L. Wang, C. Huang, C. Niu, K. Xiang, C. Xu, G. A. Solan, H. Ma and W. Sun, New J. Chem., 2018, 42, 3102 DOI: 10.1039/C7NJ03876C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements