Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2019
Previous Article Next Article

Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems

Author affiliations

Abstract

A novel type of adaptable polyionic elastomers with rational molecular design is reported to address the dilemma encountered in soft electronic and ionic conductors. The conductivity of these elastomers is stable both during stretching and in air. The polyionic elastomers are highly transparent, 3D-printable, ultra-stretchable, self-healable, self-powered, and capable of sensing strain, stress, touch, humidity, temperature, etc. In addition, they can mimicking organisms with entropy-driven actuation and feedback. This type of materials contributes to prosthetic skins and neuromuscular systems and shows great potential for soft robotics and artificially intelligent applications.

Graphical abstract: Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems

Back to tab navigation

Supplementary files

Article information


Submitted
18 Sep 2018
Accepted
13 Nov 2018
First published
13 Nov 2018

Mater. Horiz., 2019,6, 538-545
Article type
Communication

Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems

Z. Lei and P. Wu, Mater. Horiz., 2019, 6, 538
DOI: 10.1039/C8MH01157E

Social activity

Search articles by author

Spotlight

Advertisements