Jump to main content
Jump to site search

Issue 16, 2018
Previous Article Next Article

Microfluidics within a well: an injection-molded plastic array 3D culture platform

Author affiliations

Abstract

Polydimethylsiloxane (PDMS) has been widely used in fabricating microfluidic devices for prototyping and proof-of-concept experiments. Due to several material limitations, PDMS has not been widely adopted for commercial applications that require large-scale production. This paper describes a novel injection-molded plastic array 3D culture (IMPACT) platform that incorporates a microfluidic design to integrate patterned 3D cell cultures within a single 96-well (diameter = 9 mm) plate. Cell containing gels can be sequentially patterned by capillary-guided flow along the corner and narrow gaps designed within the 96-well form factor. Compared to PDMS-based hydrophobic burst valve designs, this work utilizes hydrophilic liquid guides to obtain rapid and reproducible patterned gels for co-cultures. When a liquid droplet (i.e. cell containing fibrin or collagen gel) is placed on a corner, spontaneous patterning is achieved within 1 second. Optimal dimensionless parameters required for successful capillary loading have been determined. To demonstrate the utility of the platform for 3D co-culture, angiogenesis experiments were performed by patterning HUVEC (human umbilical endothelial cells) and LF (lung fibroblasts) embedded in 3D fibrin gels. The angiogenic sprouts (with open lumen tip cells expressing junctional proteins) are comparable to those observed in PDMS based devices. The IMPACT device has the potential to provide a robust high-throughput experimental platform for vascularized microphysiological systems.

Graphical abstract: Microfluidics within a well: an injection-molded plastic array 3D culture platform

Back to tab navigation

Supplementary files

Publication details

The article was received on 02 Apr 2018, accepted on 28 Jun 2018 and first published on 02 Jul 2018


Article type: Paper
DOI: 10.1039/C8LC00336J
Citation: Lab Chip, 2018,18, 2433-2440
  •   Request permissions

    Microfluidics within a well: an injection-molded plastic array 3D culture platform

    Y. Lee, J. W. Choi, J. Yu, D. Park, J. Ha, K. Son, S. Lee, M. Chung, H. Kim and N. L. Jeon, Lab Chip, 2018, 18, 2433
    DOI: 10.1039/C8LC00336J

Search articles by author

Spotlight

Advertisements