Issue 16, 2018

Revisiting alkaline aerobic lignin oxidation

Abstract

Lignin conversion to renewable chemicals is a promising means to improve the economic viability of lignocellulosic biorefineries. Alkaline aerobic oxidation of lignin has long been employed for production of aromatic compounds such as vanillin and syringaldehyde, but this approach primarily focuses on condensed substrates such as Kraft lignin and lignosulfonates. Conversely, emerging lignocellulosic biorefinery schemes enable the production of more native-like, reactive lignin. Here, we revisit alkaline aerobic oxidation of highly reactive lignin substrates to understand the impact of reaction conditions and catalyst choice on product yield and distribution. The oxidation of native poplar lignin was studied as a function of temperature, NaOH loading, reaction time, and oxygen partial pressure. Besides vanillin and syringaldehyde, other oxidation products include acetosyringone and vanillic, syringic, and p-hydroxybenzoic acids. Reactions with vanillin and syringaldehyde indicated that these compounds are further oxidized to non-aromatic carboxylic acids during alkaline aerobic oxidation, with syringaldehyde being substantially more reactive than vanillin. The production of phenolic compounds from lignin is favored by high NaOH loadings and temperatures, but short reaction times, as the products degrade rapidly, which is further exacerbated by the presence of oxygen. Under optimal conditions, a phenolic monomer yield of 30 wt% was obtained from poplar lignin. Testing a range of catalysts showed that Cu-containing catalysts, such as CuSO4 and LaMn0.8Cu0.2O3, accelerate product formation; specifically, the catalyst does not increase the maximum yield, but expands the operating window in which high product yields are obtainable. We also demonstrate that other native and isolated lignin substrates that are significantly chemically modified are effectively converted to phenolic compounds. Finally, alkaline aerobic oxidation of native lignins was compared to nitrobenzene oxidation and reductive catalytic fractionation, as these methods constitute suitable benchmarks for lignin depolymerization. While nitrobenzene oxidation achieved a somewhat higher yield, similar monomer yields were obtained through RCF and alkaline aerobic oxidation, especially for lignins with a high guaiacyl- and/or p-hydroxyphenyl-content, as syringyl units are more unstable during oxidation. Overall, this study highlights the potential for aerobic lignin oxidation revisited on native-like lignin substrates.

Graphical abstract: Revisiting alkaline aerobic lignin oxidation

Supplementary files

Article information

Article type
Paper
Submitted
13 Feb 2018
Accepted
11 Jul 2018
First published
11 Jul 2018

Green Chem., 2018,20, 3828-3844

Author version available

Revisiting alkaline aerobic lignin oxidation

W. Schutyser, J. S. Kruger, A. M. Robinson, R. Katahira, D. G. Brandner, N. S. Cleveland, A. Mittal, D. J. Peterson, R. Meilan, Y. Román-Leshkov and G. T. Beckham, Green Chem., 2018, 20, 3828 DOI: 10.1039/C8GC00502H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements