Issue 8, 2018

One-step formation of a double Pickering emulsion via modulation of the oil phase composition

Abstract

There are two long-standing issues that are holding back the full exploitation of food-based double emulsions: (i) unavailability of large-scale equipment to ensure efficient nondestructive two-step emulsification and (ii) limited food-grade ingredients available to replace polyglycerol polyricinoleate (PGPR) as the primary emulsifier. To overcome these, a facile one-step emulsification strategy was developed to generate a food-grade W/O/W double Pickering emulsion by using corn-peptide-functionalized calcium phosphate (CP-CaP) particles as the emulsifier. It was demonstrated that the wettability of such CP-CaP particles can be tuned through modulation of the oil phase composition. The incorporation of health benefiting ω-3 oils (algal oil) or essential polyunsaturated fatty acids (linoleic acid and linolenic acid) into common vegetable oils leads to the hydrophobization of a fraction of CP-CaP particles through in situ adsorption of the free fatty acids, which provide satisfactory stabilization of both O/W and W/O interfaces, thus generating stable double Pickering emulsions. Moreover, the algal oil-loaded double Pickering emulsions that incorporate water-soluble isoascorbic acid show improvement in both their oxidative stability and flavor properties. This study demonstrated that the edible CP-CaP particle based double Pickering emulsions have promising potential to be applied in the food industry.

Graphical abstract: One-step formation of a double Pickering emulsion via modulation of the oil phase composition

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2018
Accepted
07 Jul 2018
First published
16 Jul 2018

Food Funct., 2018,9, 4508-4517

One-step formation of a double Pickering emulsion via modulation of the oil phase composition

Q. Ruan, L. Zeng, J. Ren and X. Yang, Food Funct., 2018, 9, 4508 DOI: 10.1039/C8FO00937F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements