Jump to main content
Jump to site search


Plasmonic photocatalysis applied to solar fuels

Abstract

The induction of chemical processes by plasmonic systems is a rapidly growing field with potentially many strategic applications. One of them is the transformation of solar energy into chemical fuel by the association of plasmonic metal nanoparticles (M NPs) and a semi-conductor (SC). When the localized surface plasmon resonance (LSPR) and the SC absorption do not match, one limitation of these systems is the efficiency of hot electron transfer from M NPs to SC through the Schottky barrier formed at the M NPs/SC interfaces. Here we show that high surface area 1wt.%Au/TiO2-UV100, prepared by adsorption of a NaBH4-protected 3 nm gold sol, readily catalyzes the photoreduction of carbon dioxide with water into methane under both solar and visible-only irradiations with a CH4 vs. H2 selectivity of 63%. Tuning Au NPs size and titania surface area, in particular via thermal treatments, highlights the key role of the metal dispersion and of the accessible Au-TiO2 perimeter interface on the direct SC-based solar process. The impact of Au NPs density in turn evidences the dual role of gold as co-catalyst and recombination sites for charge carriers. It is shown that the plasmon-induced process contributes up to 20% of the solar activity. The plasmon-based contribution is enhanced by a large Au NP size and a high degree of crystallinity of the SC support. By minimizing surface hydroxylation while retaining a relatively high surface area of 120 m2 g-1, pre-calcining TiO2-UV100 at 450°C leads to an optimum monometallic system in terms of activity and selectivity under both solar and visible irradiation. A state-of-the-art methane selectivity of 100% is achieved in the hot electron process.

Back to tab navigation

Publication details

The article was received on 02 Oct 2018, accepted on 16 Nov 2018 and first published on 16 Nov 2018


Article type: Paper
DOI: 10.1039/C8FD00144H
Citation: Faraday Discuss., 2018, Accepted Manuscript
  •   Request permissions

    Plasmonic photocatalysis applied to solar fuels

    S. Bardey, A. Bonduelle-Skrzypczak, A. Fécant, Z. Cui, C. Colbeau-Justin, V. Caps and V. KELLER, Faraday Discuss., 2018, Accepted Manuscript , DOI: 10.1039/C8FD00144H

Search articles by author

Spotlight

Advertisements