Issue 37, 2018

Ta3N5 nanoparticles/TiO2 hollow sphere (0D/3D) heterojunction: facile synthesis and enhanced photocatalytic activities of levofloxacin degradation and H2 evolution

Abstract

Active removal of recalcitrant antibiotic contaminants for wastewater purification and hydrogen evolution from water splitting using hollow-structured photocatalysts has attracted considerable interest in the field of environmental governance and energy conversion. Herein, 0D Ta3N5 nanoparticles anchored on 3D TiO2 hollow nanosphere composites (0D/3D Ta/Ti) were designed and fabricated via a feasible surface self-assembly process for the first time. Various techniques were employed to characterize the structure and optical properties of the as-prepared samples. The photocatalytic activities of Ta3N5/TiO2 hybrids were systematically evaluated via both photodegradation of levofloxacin (LEV) and water splitting for hydrogen evolution under solar light irradiation. The degradation results showed that the x-Ta/Ti composites exhibit remarkably better performances for LEV degradation than pristine TiO2. The 3 wt% Ta3N5 nanoparticle-loaded hollow TiO2 composite material exhibited optimal photocatalytic activity (92.79%), and its degradation rate constant was 3.04 times that of TiO2. Simultaneously, the 3-Ta/Ti composite also possessed high ability to degrade other antibiotics such as ciprofloxacin (CIP) and tetracycline hydrochloride (TCH) and colored organic dyes such as Rhodamine B (RhB). Besides, x-Ta/Ti composites exhibited higher photocatalytic hydrogen evolution activities compared with TiO2 hollow spheres. The efficient charge transfer and separation between the close heterogeneous interfaces, broadened spectral response range and improved specific surface area were mainly responsible for the superior photocatalytic performance of the x-Ta/Ti nanocomposite. Our study provides an effective strategy for the design of hollow structure composite photocatalysts with excellent photocatalytic performances not only for pollutant removal, but also for efficient solar-to-fuel conversion.

Graphical abstract: Ta3N5 nanoparticles/TiO2 hollow sphere (0D/3D) heterojunction: facile synthesis and enhanced photocatalytic activities of levofloxacin degradation and H2 evolution

Article information

Article type
Paper
Submitted
07 Jun 2018
Accepted
15 Aug 2018
First published
17 Aug 2018

Dalton Trans., 2018,47, 13113-13125

Ta3N5 nanoparticles/TiO2 hollow sphere (0D/3D) heterojunction: facile synthesis and enhanced photocatalytic activities of levofloxacin degradation and H2 evolution

Y. Jiang, X. Jing, K. Zhu, Z. Peng, J. Zhang, Y. Liu, W. Zhang, L. Ni and Z. Liu, Dalton Trans., 2018, 47, 13113 DOI: 10.1039/C8DT02343C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements