Jump to main content
Jump to site search

Issue 40, 2018
Previous Article Next Article

An in situ spectroelectrochemical study on the orientation changes of an [FeiiiLN2O3] metallosurfactant deposited as LB Films on gold electrode surfaces

Author affiliations

Abstract

In this paper we analyze the changes in molecular orientation triggered by electrochemical reduction of an iron-containing surfactant in Langmuir–Blodgett films deposited onto gold electrodes. The metallosurfactant [FeIII(LN2O3)] (1) is an established molecular rectifier capable of unidirectional electron transfer between two electrodes. A gradual decrease in the activity is observed in sequential current vs. potential curves upon repeated cycles. Here we evaluate the redox response associated with the reduction of the FeIII/FeII couple in a single monolayer, as well as in a 5-layer LB film of 1. We use polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) to follow structural and orientation changes associated with such applied potential scans. We observe that the reduction of the Fe center becomes increasingly irreversible because an Fe–Ophenolate bond is cleaved. This transformation is accompanied by an almost vertical change in the orientation of metallosurfactant molecules in LB films.

Graphical abstract: An in situ spectroelectrochemical study on the orientation changes of an [FeiiiLN2O3] metallosurfactant deposited as LB Films on gold electrode surfaces

Back to tab navigation

Supplementary files

Article information


Submitted
25 Jan 2018
Accepted
16 Mar 2018
First published
22 Mar 2018

Dalton Trans., 2018,47, 14218-14226
Article type
Paper
Author version available

An in situ spectroelectrochemical study on the orientation changes of an [FeIIILN2O3] metallosurfactant deposited as LB Films on gold electrode surfaces

I. Brand, J. Juhaniewicz-Debinska, L. Wickramasinghe and C. N. Verani, Dalton Trans., 2018, 47, 14218
DOI: 10.1039/C8DT00333E

Social activity

Search articles by author

Spotlight

Advertisements