Novel double layer lanthanide metal–organic networks for sensing applications†
Abstract
A trifunctional aromatic building block (H2L) containing three different types of functional groups (carboxyl C(O)OH, aldehyde C(O)H, and O-ether) was applied for the hydrothermal synthesis of two novel lanthanide 2D coordination polymers [Ln(μ-HL)(μ3-L)(phen)]n {Ln = Tb (1) and Eu (2); H2L = 5-methoxy-(4-benzaldehyde)-1,3-benzene dicarboxylic acid; phen = 1,10-phenanthroline}. Both compounds 1 and 2 are isostructural and reveal very complicated 2D metal–organic double layers with the 3,4L27 topology. The presence of free aldehyde groups positioned outside of the double layers opens up a possibility of using them as functional groups toward sensing amines and small organic molecules. The fluorescence measurements for the Tb derivative 1 reveal that it acts as an efficient fluorescence sensor for p-phenylenediamine, benzidine and acetone molecules via a luminescence quenching effect. A similar sensing behavior was observed for the Eu compound 2. Moreover, thin-films of 1-PEG on glass (1-PEG-glass thin-film material) were fabricated and investigated for the detection of amine vapors.