Issue 17, 2018

Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine

Abstract

Iodine sites have been incorporated in both MIL-53 (Al) and UiO-66 (Zr) MOFs. A multivariate approach was used to increase the accessible area within the pores to allow for the catalytic oxidation of a model substrate, hydroquinone, to the corresponding quinone. In the process, three new phases of MIL-53 were discovered, one of which proved instrumental in allowing catalysis to occur. Both UiO-66 and MIL-53 with 25% incorporated iodine containing linkers allowed for a near-ideal balance between high density of catalytic sites and sufficient space for mass transport to enable catalysis to occur. Good conversions and selectivities were observed in nitromethane, ethyl acetate, acetone and ethanol with UiO-66 which proved to be the more active of the two catalysts. Oxone and 3-chloroperbenzoic acid acted as competent co-oxidants. X-ray photoelectron spectroscopy revealed that the reaction proceeded through an I(III) oxidation state. The MIL-53 framework was readily recycled while the UiO-66 MOF suffered from catalyst deactivation due to particle agglomeration. UiO-66 with 25% iodine containing linker proved to be a competent catalyst for a variety of substituted hydroquinones.

Graphical abstract: Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine

Supplementary files

Article information

Article type
Paper
Submitted
19 Apr 2018
Accepted
29 Jul 2018
First published
30 Jul 2018

Catal. Sci. Technol., 2018,8, 4349-4357

Author version available

Make room for iodine: systematic pore tuning of multivariate metal–organic frameworks for the catalytic oxidation of hydroquinones using hypervalent iodine

B. Tahmouresilerd, P. J. Larson, D. K. Unruh and A. F. Cozzolino, Catal. Sci. Technol., 2018, 8, 4349 DOI: 10.1039/C8CY00794B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements