Issue 16, 2018

Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite

Abstract

This work reports a composite of poly(3,4-ethylenedioxythiophene) (PEDOT) that is notably more catalytically active for hydrogen generation than the industry-standard benchmark catalyst, Pt, under the same conditions. A PEDOT thin-film containing nanoparticulate Ni (nano-Ni) and reduced graphene oxide (rGO) in the specific molar ratio of 5.6 (C; PEDOT) : 1 (Ni) : 5.2 (C; other), (photo)catalytically generated H2 at 3.6 mA cm−2 (including ca. 0.2 mA cm−2 due to the light illumination) after 3 h at −0.75 V (vs. Ag/AgCl) in 0.05 M H2SO4/0.2 M Na2SO4 under 0.25 sun. A control nano-Ni/rGO film containing the same quantities of nano-Ni and rGO but without any PEDOT, yielded 2.1 mA cm−2, indicating that the PEDOT synergistically amplified the above result by 71%. Other ratios of the above PEDOT composite produced notably lower activities. Control PEDOT, PEDOT/nano-Ni, and PEDOT/rGO films were an order of magnitude less catalytically active. A control bare Pt electrode produced only 2.2 mA cm−2 under the same conditions. Studies suggested the origin of the synergistic amplification to involve the PEDOT electrically connecting the largest number of active sites by the shortest, most efficient pathways for hole transport. These results confirm the proposition that thin-film conducting polymers involving very specific, optimum ratios of catalyst density to thickness may synergistically amplify catalysis.

Graphical abstract: Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2018
Accepted
18 Jul 2018
First published
19 Jul 2018

Catal. Sci. Technol., 2018,8, 4169-4179

Author version available

Synergistic amplification of catalytic hydrogen generation by a thin-film conducting polymer composite

M. Alsultan, J. Choi, R. Jalili, P. Wagner and G. F. Swiegers, Catal. Sci. Technol., 2018, 8, 4169 DOI: 10.1039/C8CY00780B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements