Issue 10, 2018

Facile deposition of Pt nanoparticles on Sb-doped SnO2 support with outstanding active surface area for the oxygen reduction reaction

Abstract

Understanding the influence of the support on the electrocatalytic behaviour of platinum is key to the development of novel Pt/oxide catalysts for the oxygen reduction reaction (ORR). For studies to isolate these effects, highly dispersed supported Pt nanoparticles with well-controlled particle sizes are required. In this study, we demonstrate a novel preparation process for Pt/oxide catalysts, with small Pt nanoparticles (2.5–3.5 nm), supported on a commercial Sb–SnO2 (ATO) nanopowder, with a very high utilization of the Pt-precursor. The organometallic chemical deposition method produces catalyst nanoparticles with a homogeneous distribution over the surface of the support even at high Pt metal loadings. Additionally, by using a mild hydrogen reduction treatment of the oxide support prior to Pt deposition, significantly smaller Pt nanoparticles were obtained with an outstanding mass-specific electrochemically active surface area exceeding 100 m2 g−1. Furthermore, by varying the Pt metal loading, several fundamental electrocatalytic effects that strongly influence the Pt/ATO system were distinguished. Good electrochemical stability during high-potential cycling was observed and was attributed to potential-dependent in situ conductivity switching of the ATO support. In turn, ORR activities of the Pt/ATO catalysts were found to be influenced by a combination of Pt particle size effects, ATO support in situ conductivity limitations at PEFC operation potentials, and electrocatalytic metal–support interactions. Therefore, in addition to demonstrating a powerful method for the preparation of exceptionally high surface area Pt/oxide catalysts, the present study contributes to the detailed understanding of the interplay between various phenomena that influence the electrocatalytic activity and stability of Pt/oxide systems for the ORR. Furthermore, the novel preparation approach for Pt/metal oxide catalysts could be of major interest for catalyst preparation in other fields of electrocatalysis and heterogeneous catalysis.

Graphical abstract: Facile deposition of Pt nanoparticles on Sb-doped SnO2 support with outstanding active surface area for the oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2017
Accepted
23 Apr 2018
First published
25 Apr 2018

Catal. Sci. Technol., 2018,8, 2672-2685

Facile deposition of Pt nanoparticles on Sb-doped SnO2 support with outstanding active surface area for the oxygen reduction reaction

R. Mohamed, T. Binninger, P. J. Kooyman, A. Hoell, E. Fabbri, A. Patru, A. Heinritz, T. J. Schmidt and P. Levecque, Catal. Sci. Technol., 2018, 8, 2672 DOI: 10.1039/C7CY02591B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements