Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 20, 2018
Previous Article Next Article

Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis

Author affiliations

Abstract

The use of sunlight to drive chemical reactions via photocatalysis is of paramount importance towards a sustainable future. Among several photocatalysts, earth-abundant polymeric carbon nitride (PCN, often wrongly named g-C3N4) has emerged as an attractive candidate due to its ability to absorb light efficiently in the visible and near-infrared ranges, chemical stability, non-toxicity, straightforward synthesis, and versatility as a platform for constructing hybrid materials. Especially, hybrids with metal nanoparticles offer the unique possibility of combining the catalytic, electronic, and optical properties of metal nanoparticles with PCN. Here, we provide a comprehensive overview of PCN materials and their hybrids, emphasizing heterostructures with metal nanoparticles. We focus on recent advances encompassing synthetic strategies, design principles, photocatalytic applications, and charge-transfer mechanisms. We also discuss how the localized surface plasmon resonance (LSPR) effect of some noble metals NPs (e.g. Au, Ag, and Cu), bimetallic compositions, and even non-noble metals NPs (e.g., Bi) synergistically contribute with PCN in light-driven transformations. Finally, we provide a perspective on the field, in which the understanding of the enhancement mechanisms combined with truly controlled synthesis can act as a powerful tool to the establishment of the design principles needed to take the field of photocatalysis with PCN to a new level, where the desired properties and performances can be planned in advance, and the target material synthesized accordingly.

Graphical abstract: Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis

Back to tab navigation

Article information


Submitted
17 Jul 2018
First published
20 Sep 2018

Chem. Soc. Rev., 2018,47, 7783-7817
Article type
Review Article

Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis

I. F. Teixeira, E. C. M. Barbosa, S. C. E. Tsang and P. H. C. Camargo, Chem. Soc. Rev., 2018, 47, 7783
DOI: 10.1039/C8CS00479J

Social activity

Search articles by author

Spotlight

Advertisements