Issue 48, 2018

The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) MX2 (M = Mo, W; X = S, Se, Te) possess unique properties and novel applications in optoelectronics, valleytronics and quantum computation. In this work, we performed first-principles calculations to investigate the electronic, optical and transport properties of the van der Waals (vdW) stacked MX2 heterostructures formed by two individual MX2 monolayers. We found that the so-called Anderson's rule can effectively classify the band structures of heterostructures into three types: straddling, staggered and broken gap. The broken gap is gapless, while the other two types possess direct (straddling, staggered) or indirect (staggered) band gaps. The indirect band gaps are formed by the relatively higher energy level of Te-d orbitals or the interlayer couplings of M or X atoms. For a large part of the formed MX2 heterostructures, the conduction band maximum (CBM) and valence band minimum (VBM) reside in two separate monolayers, thus the electron–hole pairs are spatially separated, which may lead to bound excitons with extended lifetimes. The carrier mobilities, which depend on three competitive factors, i.e. elastic modulus, effective mass and deformation potential constant, show larger values for electrons of MX2 heterostructures compared to their constituent monolayers. Finally, the calculated optical properties reveal strong absorption in the ultraviolet region.

Graphical abstract: The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2018
Accepted
12 Nov 2018
First published
12 Nov 2018

Phys. Chem. Chem. Phys., 2018,20, 30351-30364

Author version available

The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures

K. Xu, Y. Xu, H. Zhang, B. Peng, H. Shao, G. Ni, J. Li, M. Yao, H. Lu, H. Zhu and C. M. Soukoulis, Phys. Chem. Chem. Phys., 2018, 20, 30351 DOI: 10.1039/C8CP05522J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements