Jump to main content
Jump to site search

Issue 43, 2018
Previous Article Next Article

Why is the change of the Johari–Goldstein β-relaxation time by densification in ultrastable glass minor?

Author affiliations

Abstract

Ultrastable glasses (USG) formed by vapor deposition are considerably denser. The onset temperature of devitrification, Ton, is significantly higher than Ton or Tg of ordinary glass (OG) formed by cooling, which implies an increase of the structural α-relaxation time by many orders of magnitude in USG compared to that in OG at the same temperature. However, for a special type of secondary relaxation having properties strongly connected to those of the α-relaxation, called the Johari–Goldstein β-relaxation, its relaxation time in USG is about an order of magnitude slower than that in OG and it has nearly the same activation energy, Eβ. The much smaller change in τβ and practically no change in Eβ by densification in USG are in stark contrast to the behavior of the α-relaxation. This cannot be explained by asserting that the Johari–Goldstein (JG) β-relaxation is insensitive to densification in USG, since the JG β-relaxation strength is significantly reduced in USG to such a level that it would require several thousands of years of aging for an OG to reach the same state, and therefore the JG β-relaxation does respond to densification in USG like the α-relaxation. Here, we provide an explanation based on two general properties established from the studies of glasses and liquids at elevated pressures and applied to USG. The increase in density of the glasses formed under high pressure can be even larger than that in USG. One property is the approximate invariance of the ratio τα(Ton)/τβ(Ton) to density change at constant τα(Ton), and the other is the same ργ/T-dependence of τβ in USG and OG where ρ is the density and γ is a material constant. These two properties are derived using the Coupling Model, giving a theoretical explanation of the phenomena. The explanation is also relevant for a full understanding of the experimental result that approximately the same surface diffusion coefficient is found in USG and OG with and without physical aging, and ultrathin films of a molecular glass-former.

Graphical abstract: Why is the change of the Johari–Goldstein β-relaxation time by densification in ultrastable glass minor?

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Aug 2018, accepted on 08 Oct 2018 and first published on 30 Oct 2018


Article type: Paper
DOI: 10.1039/C8CP05107K
Citation: Phys. Chem. Chem. Phys., 2018,20, 27342-27349
  • Open access: Creative Commons BY license
  •   Request permissions

    Why is the change of the Johari–Goldstein β-relaxation time by densification in ultrastable glass minor?

    K. L. Ngai, M. Paluch and C. Rodríguez-Tinoco, Phys. Chem. Chem. Phys., 2018, 20, 27342
    DOI: 10.1039/C8CP05107K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements