Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 45, 2018
Previous Article Next Article

Ab initio molecular dynamics study of solvated electrons in methanol clusters

Author affiliations


We performed a series of ab initio molecular dynamics simulations to investigate the physical properties of small methanol cluster anions, [(CH3OH)n], (n = 8–32). An excess electron was attached to neutral clusters that were prepared to accommodate the electron in interior cavity states or surface bound states. The computed initial binding energies of the electrons to these clusters indicate appealing similarity to the experimentally observed vertical detachment energies. The tendency of the interior state clusters parallels that of the clusters with strong electron binding in the experiments, while the simulated unrelaxed surface state anions are similar to the observed weakly bound species. This assignment is consistent with a previous identification based on hybrid quantum-classical simulations. The time evolution of the cluster anions suggests that interior state electrons slowly move to and relax on the surface, in excess electronic states that appear significantly more stable than the experimentally assigned putative surface states. Based on this result we predict the existence of relaxed surface state isomers of small methanol cluster anions. Due to the kinetic metastability of the experimentally found weakly bound species, we anticipate a serious technical challenge to prepare and identify small methanol cluster anions with relaxed surface states. These more strongly binding surface states are stabilized by dangling hydroxyl hydrogen atoms pointing to the excess electron's charge distribution. In addition, methyl hydrogens also appear to contribute to the stability of these states. During its transition to the surface, the interior excess electron maintains its initial solvent cavity. No signs of non-cavity interior states are observed in the present first principles ab initio molecular dynamics simulations.

Graphical abstract: Ab initio molecular dynamics study of solvated electrons in methanol clusters

Back to tab navigation

Supplementary files

Publication details

The article was received on 08 Aug 2018, accepted on 23 Oct 2018 and first published on 24 Oct 2018

Article type: Paper
DOI: 10.1039/C8CP05052J
Phys. Chem. Chem. Phys., 2018,20, 28741-28750

  •   Request permissions

    Ab initio molecular dynamics study of solvated electrons in methanol clusters

    L. Mones, G. Pohl and L. Turi, Phys. Chem. Chem. Phys., 2018, 20, 28741
    DOI: 10.1039/C8CP05052J

Search articles by author