Issue 45, 2018

The interplay between single particle anisotropy and interparticle interactions in ensembles of magnetic nanoparticles

Abstract

This paper aims to analyze the competition of single particle anisotropy and interparticle interactions in nanoparticle ensembles using a random anisotropy model. The model is first applied to ideal systems of non-interacting and strongly dipolar interacting ensembles of maghemite nanoparticles. The investigation is then extended to more complex systems of pure cobalt ferrite CoFe2O4 (CFO) and mixed cobalt–nickel ferrite (Co,Ni)Fe2O4 (CNFO) nanoparticles. Both samples were synthetized by the polyol process and exhibit the same particle size (DTEM ≈ 5 nm), but with different interparticle interaction strengths and single particle anisotropy. The implementation of the random anisotropy model allows investigation of the influence of single particle anisotropy and interparticle interactions, and sheds light on their complex interplay as well as on their individual contribution. This analysis is of fundamental importance in order to understand the physics of these systems and to develop technological applications based on concentrated magnetic nanoparticles, where single and collective behaviors coexist.

Graphical abstract: The interplay between single particle anisotropy and interparticle interactions in ensembles of magnetic nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2018
Accepted
25 Oct 2018
First published
08 Nov 2018
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2018,20, 28634-28643

The interplay between single particle anisotropy and interparticle interactions in ensembles of magnetic nanoparticles

G. Muscas, G. Concas, S. Laureti, A. M. Testa, R. Mathieu, J. A. De Toro, C. Cannas, A. Musinu, M. A. Novak, C. Sangregorio, S. S. Lee and D. Peddis, Phys. Chem. Chem. Phys., 2018, 20, 28634 DOI: 10.1039/C8CP03934H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements