Issue 34, 2018

The bismuth tetramer Bi4: the ν3 key to experimental observation

Abstract

The spectroscopic identification of Bi4 has been very elusive. Two constitutional Bi4 isomers of Td and C2v symmetry are investigated and each is found to be a local energetic minimum. The optimized geometries and vibrational frequencies of these two isomers are obtained at the CCSD(T)/cc-pVQZ-PP level of theory, utilizing the Stoll, Metz, and Dolg 60-electron effective core potential. The fundamental frequencies of the Td isomer are obtained at the same level of theory. The focal point analysis method, from a maximum basis set of cc-pV5Z-PP, and proceeding to a maximum correlation method of CCSDTQ, was employed to determine the dissociation energy of Bi4 (Td) into two Bi2 and the adiabatic energy difference between the C2v and Td isomers of Bi4. These quantities are predicted to be +65 kcal mol−1 and +39 kcal mol−1, respectively. Two electron vertical excitation energies between the Td and C2v electronic configurations are computed to be 156 kcal mol−1 for the Td isomer and 9 kcal mol−1 for the C2v isomer. The most probable approach to laboratory spectroscopic identification of Bi4 is via an infrared spectrum. The predicted fundamentals (cm−1) with harmonic IR intensities in parentheses (km mol−1) are 94(0), 123(0.23), and 167(0) for the Td isomer. The moderate IR intensity for the only allowed fundamental may explain why Bi4 has yet to be observed. Through natural bond orbital analysis, the C2v isomer of Bi4 was discovered to exhibit “long-bonding” between the furthest apart ‘wing’ atoms. This long-bonding is postulated to be facilitated by the σ-bonding orbital between the ‘spine’ atoms of the C2v isomer.

Graphical abstract: The bismuth tetramer Bi4: the ν3 key to experimental observation

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2018
Accepted
10 Aug 2018
First published
16 Aug 2018

Phys. Chem. Chem. Phys., 2018,20, 21881-21889

Author version available

The bismuth tetramer Bi4: the ν3 key to experimental observation

M. E. Lahm, P. R. Hoobler, J. M. Turney, K. A. Peterson and H. F. Schaefer, Phys. Chem. Chem. Phys., 2018, 20, 21881 DOI: 10.1039/C8CP03529F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements