Jump to main content
Jump to site search

Issue 25, 2018
Previous Article Next Article

Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation

Author affiliations

Abstract

A Martini coarse-grained Molecular Dynamics (MD) model for the doped conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is developed. The morphology of PEDOT:Tos (i.e. PEDOT doped with molecular tosylate) and its crystallization in aqueous solution for different oxidation levels were calculated using the developed method and compared with corresponding all atomistic MD simulations. The diffusion coefficients of Na+ and Cl ions in PEDOT:Tos are studied using the developed coarse-grained MD approach. It is shown that the diffusion coefficients decrease exponentially as the hydration level is reduced. It is also predicted that the diffusion coefficients decrease when the doping level of PEDOT is increased. The observed behavior is related to the evolution of water clusters and trapping of ions around the polymer matrix as the hydration level changes. The predicted behavior of the ionic diffusion coefficients can be tested experimentally, and we believe that molecular picture of ionic diffusion in PEDOT unraveled in the present study is instrumental for the design of polymeric materials and devices for better and enhanced performance.

Graphical abstract: Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 May 2018, accepted on 31 May 2018 and first published on 31 May 2018


Article type: Paper
DOI: 10.1039/C8CP02902D
Citation: Phys. Chem. Chem. Phys., 2018,20, 17188-17198
  • Open access: Creative Commons BY license
  •   Request permissions

    Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation

    M. Modarresi, J. F. Franco-Gonzalez and I. Zozoulenko, Phys. Chem. Chem. Phys., 2018, 20, 17188
    DOI: 10.1039/C8CP02902D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements