Issue 27, 2018

Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides

Abstract

Atomically thin Janus transition metal dichalcogenides (JTMDs) with an asymmetric structure have emerged as a new class of intriguing two-dimensional (2D) semiconductor materials. Using state-of-the-art density functional theory (DFT) calculations, we systematically investigate the structural, electronic, and optical properties of JTMD monolayers and heterostructures. Our calculated results indicate that the JTMD monolayers suffer from a bending strain but present high thermodynamic stability. All of them are semiconductors with a band-gap range from 1.37 to 1.96 eV. They possess pronounced optical absorption in the visible-light region and cover a large range of carrier mobilities from 28 to 606 cm2 V−1 s−1, indicating strong anisotropic characteristics. Significantly, some monolayer JTMDs (e.g., WSSe and WSeTe) exhibit superior mobilities than conventional TMD monolayers, such as MoS2. Moreover, the absolute band-edge positions of the JTMD monolayers are higher than the water redox potential, and most JTMD heterostructures have a type-II band alignment that contributes to the separation of carriers. Our work suggests that the 2D JTMD monolayers are promising for nanoelectronic, optoelectronic, and photocatalytic applications.

Graphical abstract: Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2018
Accepted
20 Jun 2018
First published
21 Jun 2018

Phys. Chem. Chem. Phys., 2018,20, 18571-18578

Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides

J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao and X. Chen, Phys. Chem. Chem. Phys., 2018, 20, 18571 DOI: 10.1039/C8CP02612B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements