Open flow non-enzymatic template catalysis and replication
Abstract
Template induced replication is the basis of multiplication and reproduction in nature and underlies the importance of gaining a detailed understanding of its mechanisms in terms of chemical reaction networks. We analyze numerically the stationary state solutions for a class of autocatalytic reactions based on reversible template assisted ligation with first and second order catalysis and governed by mass-action kinetics. Chemical thermodynamics leads to constraints on the reaction rate constants which result in very low template yield in systems subject to fixed external concentrations. When however the network is driven out of equilibrium via open flow in a well-mixed reactor, the template yield can be increased significantly for very small fluid flow rates. This can be understood in terms of driven unidirectional pathways, as determined by stoichiometric network analysis.