Issue 19, 2018

Static second hyperpolarizability of inverse sandwich compounds (M1–C5H5–M2) of alkali (M1 = Li, Na, K) and alkaline earth metals (M2 = Be, Mg, Ca)

Abstract

In the investigated inverse sandwich complexes, charge transfer from alkali metal (M1) led to aromatically stabilized Cp ring, which prevented further charge transfer from the alkaline earth metal (M2). This electron push effect resulted in diffusion of electron density from the outermost “ns” subshell of alkaline earth metal. The alkaline earth metal is weakly bound to the alkali metal–C5H5 complex. The vertical ionization energy of the chosen M1–Cp–M2 complexes was smaller than that of the corresponding alkaline earth metals. Large second hyperpolarizability (106–108 a.u.) was obtained for the studied molecules. The correction due to the basis set superposition error (BSSE) in the calculated second hyperpolarizability was found to be small for larger systems, while it was rather significant for small systems. The MP4SDQ and CCSD results were in fair agreement, which indicates the necessity of higher order electron correlation treatment in the accurate description of second hyperpolarizability. Calculated dynamic second hyperpolarizabilities at 1064 nm were found to increase considerably for most of the chosen metal complexes.

Graphical abstract: Static second hyperpolarizability of inverse sandwich compounds (M1–C5H5–M2) of alkali (M1 = Li, Na, K) and alkaline earth metals (M2 = Be, Mg, Ca)

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2018
Accepted
18 Apr 2018
First published
19 Apr 2018

Phys. Chem. Chem. Phys., 2018,20, 13331-13339

Static second hyperpolarizability of inverse sandwich compounds (M1–C5H5–M2) of alkali (M1 = Li, Na, K) and alkaline earth metals (M2 = Be, Mg, Ca)

K. Hatua, A. Mondal and P. K. Nandi, Phys. Chem. Chem. Phys., 2018, 20, 13331 DOI: 10.1039/C8CP01210E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements