Optimizing the motion of a folding molecular motor in soft matter
Abstract
We use molecular dynamics simulations to investigate the displacement of a periodically folding molecular motor in a viscous environment. Our aim is to find significant parameters to optimize the displacement of the motor. We find that the choice of a massy host or of small host molecules significantly increase the motor displacements. While in the same environment, the motor moves with hopping solid-like motions while the host moves with diffusive liquid-like motions, a result that originates from the motor's larger size. Due to hopping motions, there are thresholds on the force necessary for the motor to reach stable positions in the medium. These force thresholds result in a threshold in the size of the motor to induce a significant displacement, that is followed by plateaus in the motor displacement.