Deep eutectic–water binary solvent associations investigated by vibrational spectroscopy and chemometrics†
Abstract
Investigation of the behaviour of deep eutectic solvents (DESs) as novel green solvents in the presence of other solvents is of great interest. In this study the behaviour of a common natural DES, namely choline chloride–glycerol deep eutectic solvent (GDES), was studied in the presence of water. A detailed study of the association of the two solvents was performed by integration of two vibrational spectroscopic methods (FTIR and Raman spectroscopy) followed by multivariate analysis. Moreover, a binary mixture of glycerol (Gly) as one of the liquid constituents of GDES and water was explored under the same conditions. A quintuplet and ternary systems were resolved for GDES–water and Gly–water probes, respectively, using multivariate analysis of global data (multi-technique and multi-experiment data arrangements). The results confirmed that in the presence of water the GDES showed different behaviour from its components. Therefore, a DES can be introduced as an independent solvent with its unique properties. Also, different H-bond interaction energies of GDES and its pure components in the presence of water were shown by theoretical calculations based on a density functional theory framework. To investigate the effects of water on the structure of GDES, molecular dynamics (MD) simulations of GDES–water liquid mixtures were performed at 0.9 mole fraction of water.