Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 16, 2018
Previous Article Next Article

Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames

Author affiliations

Abstract

In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C–C and C–H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane < 1-pentene < 2M2B. This comparative study enables valuable insights into fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

Graphical abstract: Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames

Back to tab navigation

Supplementary files

Article information


Submitted
16 Nov 2017
Accepted
26 Jan 2018
First published
02 Feb 2018

Phys. Chem. Chem. Phys., 2018,20, 10780-10795
Article type
Paper

Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames

L. Ruwe, K. Moshammer, N. Hansen and K. Kohse-Höinghaus, Phys. Chem. Chem. Phys., 2018, 20, 10780
DOI: 10.1039/C7CP07743B

Social activity

Search articles by author

Spotlight

Advertisements