Issue 7, 2018

Reduction of the thermal conductivity of a graphene/hBN heterobilayer via interlayer sp3 bonds

Abstract

Thermal conductivities (TCs) of graphene (g)/hexagonal boron nitride (hBN) heterobilayers with interlayer sp3 bonds are computed using nonequilibrium molecular dynamics (NEMD) simulations. It is revealed that the TC of a g/hBN heterobilayer drastically decreases if there is even a few interlayer sp3 bonds, and continues to gradually decrease upon increasing their fraction up to 0.25, where the fraction of the interlayer sp3 bonds is defined by the atomic fraction of interlayer-sp3-bonded carbon atoms within graphene constituting a g/hBN heterobilayer. If their fraction exceeds 0.25, the TC of a g/hBN heterobilayer gradually increases, namely, the TC of a g/hBN heterobilayer takes a minimum at the fraction of 0.25 of the interlayer sp3 bonds. In order to understand such a behavior of the TC of the heterobilayer, the local phonon density of states (DOSs) in each of the two layers is calculated. By examining the local phonon DOSs, it was found that the existence of the minimum TC of the heterobilayer can be understood by considering both the phonon scattering and the characteristic change of the heterobilayer structure. In the range of the low fractions of interlayer sp3 bonds, the van der Waals (vdW) interactions are predominantly effective for binding the two layers, and the interlayer sp3 bonds act as phonon scatterers like defects to make the TC of the heterobilayer decrease. Upon increasing the fraction of interlayer sp3 bonds, the contribution of the interlayer sp3 bonds to the unification of the two layers becomes stronger, and hence the rigidity of the heterobilayer structure gradually increases. If their fraction exceeds 0.25, the heterobilayer structure approaches a quasi-three-dimensional one, so that the TC of the heterobilayer increases. These findings will be useful for tuning the TCs of g/hBN heterobilayers via interlayer sp3 bonds.

Graphical abstract: Reduction of the thermal conductivity of a graphene/hBN heterobilayer via interlayer sp3 bonds

Article information

Article type
Paper
Submitted
30 Oct 2017
Accepted
23 Jan 2018
First published
23 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 5217-5226

Reduction of the thermal conductivity of a graphene/hBN heterobilayer via interlayer sp3 bonds

T. Iwata and K. Shintani, Phys. Chem. Chem. Phys., 2018, 20, 5217 DOI: 10.1039/C7CP07345C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements