Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 10, 2018
Previous Article Next Article

Harnessing complexity in molecular self-assembly using computer simulations

Author affiliations


In molecular self-assembly, hundreds of thousands of freely-diffusing molecules associate to form ordered and functional architectures in the absence of an actuator. This intriguing phenomenon plays a critical role in biology and has become a powerful tool for the fabrication of advanced nanomaterials. Due to the limited spatial and temporal resolutions of current experimental techniques, computer simulations offer a complementary strategy to explore self-assembly with atomic resolution. Here, we review recent computational studies focusing on both thermodynamic and kinetic aspects. As we shall see, thermodynamic approaches based on modeling and statistical mechanics offer initial guidelines to design nanostructures with modest computational effort. Computationally more intensive analyses based on molecular dynamics simulations and kinetic network models (KNMs) reach beyond it, opening the door to the rational design of self-assembly pathways. Current limitations of these methodologies are discussed. We anticipate that the synergistic use of thermodynamic and kinetic analyses based on computer simulations will provide an important contribution to the de novo design of self-assembly.

Graphical abstract: Harnessing complexity in molecular self-assembly using computer simulations

Back to tab navigation

Article information

11 Sep 2017
07 Feb 2018
First published
07 Feb 2018

Phys. Chem. Chem. Phys., 2018,20, 6767-6776
Article type

Harnessing complexity in molecular self-assembly using computer simulations

X. Zeng, L. Zhu, X. Zheng, M. Cecchini and X. Huang, Phys. Chem. Chem. Phys., 2018, 20, 6767
DOI: 10.1039/C7CP06181A

Social activity

Search articles by author