Issue 34, 2018

Extra thermo- and water-stable one-dimensional organic–inorganic hybrid perovskite [N-methyldabconium]PbI3 showing switchable dielectric behaviour, conductivity and bright yellow-green emission

Abstract

Haloplumbate-based perovskites display promising functionalities for advanced photovoltaic, optoelectronic and other applications with high performances and low costs. Herein, we present a study of variable-temperature crystal structures, dielectrics and conductance at 153–513 K, and luminescence at ambient temperature for a one-dimensional organic–inorganic perovskite, [N-methyldabconium]PbI3 (1). Hybrid 1 shows extra thermo- and water-stability (thermal decomposition at ca. 653 K), switchable dielectric behaviour and conductance at around 348 K, owing to symmetry-breaking structure phase transition from the hexagonal space group P63/mmc in the high-temperature phase to the orthogonal space group Pcba in the low-temperature phase, and bright yellow-green emission at room temperature, originating from the electron transition within the semiconducting {PbI3} chains. This study will broaden the scope of lead halide-based hybrid materials for practical application in optical and electrical devices.

Graphical abstract: Extra thermo- and water-stable one-dimensional organic–inorganic hybrid perovskite [N-methyldabconium]PbI3 showing switchable dielectric behaviour, conductivity and bright yellow-green emission

Supplementary files

Article information

Article type
Communication
Submitted
30 Jan 2018
Accepted
04 Apr 2018
First published
04 Apr 2018

Chem. Commun., 2018,54, 4321-4324

Extra thermo- and water-stable one-dimensional organic–inorganic hybrid perovskite [N-methyldabconium]PbI3 showing switchable dielectric behaviour, conductivity and bright yellow-green emission

C. Xue, Z. Yao, J. Zhang, W. Liu, J. Liu and X. Ren, Chem. Commun., 2018, 54, 4321 DOI: 10.1039/C8CC00786A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements