Issue 26, 2018

Decreasing the uncertainty of peak assignments for the analysis of synthetic cathinones using multi-dimensional ultra-high performance liquid chromatography

Abstract

Chromatographic techniques which are commonly employed in forensic analysis utilize retention time as an identification parameter. Conventional one-dimensional chromatographic techniques such as gas and liquid chromatography inherently lack the separation power required to resolve the multitude of combinations possible when analyzing emerging drugs. Multi-dimensional chromatography, which significantly increases resolving power, is a viable means to increase the utility of retention time measurements for compound identification. This study aims to demonstrate the utility of multi-dimensional ultra-high performance liquid chromatography (UHPLC) with at-column dilution for the screening and identification of synthetic cathinones with significantly decreased uncertainty. One-dimensional separations were conducted on mixtures of 16 controlled synthetic cathinones and 7 pentedrone positional isomers in order to determine the most orthogonal combination for multi-dimensional chromatography. The separations utilized several stationary phases for both reversed phase chromatography (RPC) and hydrophilic interaction chromatography (HILIC). Based on the separations performed, it was determined that a combination of a BEH C8 column (operated in RPC mode) and an HSS PFP column (operated in HILIC mode) as the first and second dimension columns, respectively, provided orthogonal separations with a decrease in peak assignment uncertainty of at least one order of magnitude. For at-column dilution, a HILIC trapping column was used with 0.025% formic acid in acetonitrile as the loading and diluting solvent. Multi-dimensional separations conducted on early, mid, and late eluting compounds showed excellent retention time repeatability, satisfactory recovery with excellent signal-to-noise, and good peak area repeatability for both the first and second dimensions. Ten simulated samples containing various adulterants and diluents were analyzed using multi-dimensional chromatography. All 10 samples showed excellent retention time matches between the sample and its corresponding standard. Thus, multi-dimensional UHPLC would significantly reduce peak assignment uncertainty leading to increased accuracy in the identification of seized drugs.

Graphical abstract: Decreasing the uncertainty of peak assignments for the analysis of synthetic cathinones using multi-dimensional ultra-high performance liquid chromatography

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2018
Accepted
06 Jun 2018
First published
07 Jun 2018

Anal. Methods, 2018,10, 3178-3187

Decreasing the uncertainty of peak assignments for the analysis of synthetic cathinones using multi-dimensional ultra-high performance liquid chromatography

Cecilia M. Ochoa, P. Shoenmakers, C. R. Mallet and I. S. Lurie, Anal. Methods, 2018, 10, 3178 DOI: 10.1039/C8AY00565F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements