Issue 14, 2018

A capillary flow-driven microfluidic system for microparticle-labeled immunoassays

Abstract

A simple, reliable, and self-powered capillary flow-driven microfluidic platform is developed for conducting microparticle-labeled immunoassays. To obtain the washing forces and binding kinetics appropriate for microparticle-labeled immunoassays, both microchannel networks and sample access holes are designed and characterized to confirm the fluidic routes. To demonstrate two different types of immunoassays, serial and parallel capillary-driven microfluidic platforms were developed for mouse immunoglobulin G (IgG) and cardiac troponin I (cTnI) using detection antibody-conjugated microparticles, respectively. With the serial capillary-driven microfluidic platform, we successfully demonstrated IgG quantification using direct immunoassay and achieved a limit of detection (LOD) of 30 pM by using pre-immobilized mouse IgG. In the parallel capillary-driven microfluidic platform, a sandwich immunoassay for detecting cTnI was demonstrated and a clinically relevant LOD as low as 4.2 pM was achieved with minimal human intervention. In both assays, the association rate constants (Ka) were measured to estimate the overall assay time. According to these estimations, microparticle-labeled immunoassays could be conducted in a few minutes using the proposed capillary-driven microfluidic devices. By coupling with various magnetic sensors, these simple immunoassay platforms enable us to achieve a true sample-in-answer-out device that can screen for a variety of targets without relying on external power sources for fluidic manipulation.

Graphical abstract: A capillary flow-driven microfluidic system for microparticle-labeled immunoassays

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2018
Accepted
31 May 2018
First published
01 Jun 2018

Analyst, 2018,143, 3335-3342

Author version available

A capillary flow-driven microfluidic system for microparticle-labeled immunoassays

A. Khodayari Bavil and J. Kim, Analyst, 2018, 143, 3335 DOI: 10.1039/C8AN00898A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements