Issue 22, 2018

Analysis of soluble or titanium dioxide derived titanium levels in human whole blood: consensus from an inter-laboratory comparison

Abstract

Exposure to titanium (Ti), via the ingestion of pigment grade Ti dioxide (TiO2), is commonplace for westernised populations. It may also occur as a consequence of metal ion leaching in subjects bearing Ti-containing implants. Accurate exposure analysis requires fit-for-purpose analytical methodology, especially for true measures of baseline levels. Inductively coupled plasma (ICP) techniques are, mainly, now used for bio-analysis of Ti. Since whole blood reference materials, certified for natural low levels of Ti, are not currently available, we undertook an inter-laboratory comparison of pooled human blood from fasted volunteers ±low level (+∼2.5 μg L−1) or high level (+10–20 μg L−1) spikes of soluble Ti or TiO2 particles. Seven established laboratories were enrolled to analyse the samples using ICP based techniques, which included at least one of ICP optical emission spectrometry (ICP-OES), high resolution ICP mass spectrometry (HR-ICP-MS), triple quadrupole ICP-MS (ICP-MS/MS) or single quadrupole ICP-MS (SQ-ICP-MS). Five laboratories diluted the blood for analysis whilst two performed acid digestion. Overall, we showed that the laboratories could, mostly, quantitatively detect modest levels of spiked Ti in blood. Markedly varying levels of Ti, however, were reported for the same baseline pooled sample (0.4–24.6 μg L−1) and, in this study, specificity was poor for SQ-ICP-MS. Digestion of samples caused sample contamination compromising limits of detection and accuracy, whilst simple dilution had no such problem, and remained linear in response for spikes with ionic and TiO2 particles. We conclude that measuring baseline levels of Ti in whole blood is challenging but should be readily achievable down to 0.5–1.5 μg L−1, if sample preparation avoids contamination and instrument techniques are used that negate polyatomic or isobaric interferences from the sample matrix. We also remind those relying upon Ti bio-analytical data for their experimental outcomes that (a) spiking and recovery experiments provide information only on linearity of detection but not at all on accuracy as this will not detect constant positive errors and that (b) biological standard materials for Ti generally contain high levels of the analyte and tend to mask baseline analytical errors. Caution may be required in interpreting the findings of some published Ti/TiO2 bio-exposure studies.

Graphical abstract: Analysis of soluble or titanium dioxide derived titanium levels in human whole blood: consensus from an inter-laboratory comparison

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2018
Accepted
13 Sep 2018
First published
01 Oct 2018

Analyst, 2018,143, 5520-5529

Analysis of soluble or titanium dioxide derived titanium levels in human whole blood: consensus from an inter-laboratory comparison

D. Koller, P. Bramhall, J. Devoy, H. Goenaga-Infante, C. F. Harrington, E. Leese, J. Morton, S. Nuñez, J. Rogers, B. Sampson and J. J. Powell, Analyst, 2018, 143, 5520 DOI: 10.1039/C8AN00824H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements