Issue 33, 2017

On the mechanical and electrical properties of self-assembly-based organosilicate porous films

Abstract

The effect of the replacement of Si–O–Si by Si–CH2–Si groups on the mechanical and electrical properties of silica-based hybrid sol–gel thin films is reported. For a reliable inference, two sets of organosilica films were synthesized – one consisting of a silica matrix decorated with methyl groups (Si–CH3) while the other further incorporating bridging methylene (Si–CH2–Si) functionalities. As a result, at the film density of 0.87 g cm−3, a higher Young's modulus of 6.6 GPa was deduced for the film containing Si–CH2–Si groups compared to 5.3 GPa for the one with Si–O–Si functionalities. Concurrently, the introduction of the methylene bridging groups leads to a dielectric constant increase from 2.12 to 2.27. Furthermore, the type of surfactant, ionic or nonionic, employed as a templating agent has a negligible effect on the electrical properties and the reliability performance of the porous organosilica films.

Graphical abstract: On the mechanical and electrical properties of self-assembly-based organosilicate porous films

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2017
Accepted
04 Aug 2017
First published
14 Aug 2017

J. Mater. Chem. C, 2017,5, 8599-8607

On the mechanical and electrical properties of self-assembly-based organosilicate porous films

M. Redzheb, S. Armini, T. Berger, M. Jacobs, M. Krishtab, K. Vanstreels, S. Bernstorff and P. Van Der Voort, J. Mater. Chem. C, 2017, 5, 8599 DOI: 10.1039/C7TC02276J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements