Harnessing low frequency-based energy using a K0.5Na0.5NbO3 (KNN) pigmented piezoelectric paint system†
Abstract
A new approach for harnessing low-frequency energy using a piezoelectric paint system was developed using potassium sodium niobate (K0.5Na0.5NbO3, ‘KNN’) as a pigment in an alkyd resin binder. The highly crystalline, rectangular-shaped KNN pigment nanoparticles with an orthorhombic phase acts as a piezoelectric material and determines the functional properties of the paint system. The energy-harvesting ability of the as-developed paint system was evaluated using a cantilever beam test in which the vibration of the beam was measured as the direct output from the piezoelectric paint. The layered conductive copper beryllium cantilever/piezoelectric paint/aluminium acts as a device structure to obtain the electrical responses of the cantilever on various mass loadings (7.2 g, 14.4 g and 21.6 g). The resonant frequency (f0) of the vibrating cantilever showed a decreasing trend as the proof mass loading increased. A maximum open circuit voltage of 1.4 V was produced by the piezoelectric paint coated on the surface of the deflecting cantilever beam at a proof mass (mp) of 21.6 g. This suggests that the developed lead-free piezoelectric paint was capable of harvesting energy from the vibrating source and was also sensitive to the degree of mechanical strain exerted by the deflecting cantilever beam.

Please wait while we load your content...