Issue 7, 2017

Cryogenic magnetocaloric effect in zircon-type RVO4 (R = Gd, Ho, Er, and Yb)

Abstract

Low-temperature magnetic refrigeration has attracted the attention of the cryogenics research community in the areas of technology in space science and in the liquefaction of hydrogen or other fuel gases, although it has been less researched compared to room-temperature magnetic refrigeration. Here, we report that the RVO4 (R = Gd, Ho, Er, and Yb) series is promising for low-temperature cryogenic refrigeration. GdVO4 is the most promising material, exhibiting a maximum magnetocaloric effect (ΔSmaxM) of 41.1 J kg−1 K−1 at 3 K for a change in field (ΔH) of 50 kOe. The values of ΔSmaxM are also promising, with 7.94 J kg−1 K−1 at 15 K, 19.7 J kg−1 K−1 at 2 K, and 17.4 J kg−1 K−1 at 2 K with ΔH = 50 kOe for HoVO4, ErVO4, and YbVO4, respectively. The maximum value of adiabatic temperature change (ΔTmaxad) attributed to the large magnetocaloric effect is 18 K for GdVO4 with ΔH = 50 kOe. The results further indicate that demagnetization with 50 kOe field close to the liquid hydrogen temperature at 20.3 K leads to the remarkable decrease of temperature to 3.5 K. Satisfying its potential as a refrigerant material, the thermal hysteresis of magnetization is negligible, and the values of ΔSmaxM and ΔTmaxad are as high as 12.4 J kg−1 K−1 and 8.5 K for 20 kOe change in field, which can be achieved without a superconducting magnet.

Graphical abstract: Cryogenic magnetocaloric effect in zircon-type RVO4 (R = Gd, Ho, Er, and Yb)

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2016
Accepted
18 Jan 2017
First published
19 Jan 2017

J. Mater. Chem. C, 2017,5, 1646-1650

Cryogenic magnetocaloric effect in zircon-type RVO4 (R = Gd, Ho, Er, and Yb)

K. Dey, A. Indra, S. Majumdar and S. Giri, J. Mater. Chem. C, 2017, 5, 1646 DOI: 10.1039/C6TC05182K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements