Issue 11, 2017

Inverted CH3NH3PbI3 perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor

Abstract

Inverted-type CH3NH3PbI3 flexible perovskite solar cells (FPeSCs) with improved flexibility were prepared by incorporating a polymeric electron conductor, poly([N,N′-bis(2-octyldodecyl)-1,4,5,8-naphthalene bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)) (PNDI-2T), into small-molecule electron conductor phenyl-C61-butyric acid methyl ester (PCBM). PCBM : PNDI-2T electron conductor films with different compositions (100 : 0, 75 : 25, 50 : 50, 25 : 75 and 0 : 100) were employed in PeSCs. The 75 : 25 PCBM : PNDI-2T film showed slightly improved power conversion efficiency (average η of 30 samples = 16.59 ± 1.13%, best = 18.4%) compared with PCBM film (average η of 30 samples = 16.49 ± 1.15%, best = 17.8%), as well as similar electrical conductivity and electron mobility, and lower absorption loss. Similarly, inverted planar FPeSCs of 75 : 25 PCBM : PNDI-2T films showed improved performance (average η of 20 samples = 13.91 ± 0.84%, best = 15.4%) compared with PCBM (average η of 20 samples = 13.04 ± 0.97%, best = 15.0%). Furthermore, the 75 : 25 PCBM : PNDI-2T inverted planar FPeSC films showed significantly improved flexibility compared with PCBM-based devices, due to the entangled polymeric PNDI-2T matrix relieving stress on the PCBM domains.

Graphical abstract: Inverted CH3NH3PbI3 perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2016
Accepted
12 Jan 2017
First published
12 Jan 2017

J. Mater. Chem. C, 2017,5, 2883-2891

Inverted CH3NH3PbI3 perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor

J. H. Heo, M. Jahandar, S. Moon, C. E. Song and S. H. Im, J. Mater. Chem. C, 2017, 5, 2883 DOI: 10.1039/C6TC05081F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements