Issue 37, 2017

High strength and self-healable gelatin/polyacrylamide double network hydrogels

Abstract

Double network (DN) hydrogels composed of two different polymer networks with strong asymmetry are excellent structural platforms to integrate different mechanical properties into a single material. However, simultaneously achieving high strength and self-healing properties in DN hydrogels still remains a challenge. In this work, we design and synthesize Gelatin/Polyacrylamide (Gelatin/PAAm) DN gels by combining thermo-reversible and physically crosslinked gelatin as the first network and covalently crosslinked PAAm as the second network. The optimized Gelatin/PAAm DN gels demonstrated high mechanical properties (E of 84 kPa, σf of 0.268 MPa, εf of 40.69 mm mm−1 and W of 6.01 MJ m−3), large hysteresis (up to 1012 kJ m−3 at λ = 30), and rapid self-recovery properties (∼87% toughness recovery at room temperature). These superior properties were largely attributed to effective energy dissipation via the rupture of the first gelatin network. Most interestingly, Gelatin/PAAm DN gels without any chemical crosslinkers in the second network enabled the achievement of both high mechanical strength and fast self-healing properties. By modulating the heating temperatures and healing times, the healed Gelatin/PAAm gels could achieve 53% healing efficiency at a physiological temperature range, which greatly expands their uses for biomedical applications. The combination of high strength, self-recovery, and self-healing properties makes Gelatin/PAAm gels promising candidates for further development and use as thermoresponsive biomaterials under physiological conditions.

Graphical abstract: High strength and self-healable gelatin/polyacrylamide double network hydrogels

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2017
Accepted
25 Jul 2017
First published
26 Jul 2017

J. Mater. Chem. B, 2017,5, 7683-7691

High strength and self-healable gelatin/polyacrylamide double network hydrogels

X. Yan, Q. Chen, L. Zhu, H. Chen, D. Wei, F. Chen, Z. Tang, J. Yang and J. Zheng, J. Mater. Chem. B, 2017, 5, 7683 DOI: 10.1039/C7TB01780D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements