Issue 22, 2017

Nanomaterials engineering for drug delivery: a hybridization approach

Abstract

The last twenty years have witnessed great advances in biology, medicine, and materials science, leading to the development of various nanoparticle (NP)-mediated drug delivery systems. Innovation in materials science has led the generation of biodegradable, biocompatible, stimuli-responsive, and targeted delivery systems. However, currently available nanotherapeutic technologies are not efficient, which has culminated in the failure of their clinical trials. Despite huge efforts devoted to drug delivery nanotherapeutics, only a small amount of the injected material could reach the desired target. One promising strategy to enhance the efficiency of NP drug delivery is to hybridize multiple materials, where each component could play a critical role in an efficient multipurpose delivery system. This review aims to comprehensively cover different techniques, materials, advantages, and drawbacks of various systems to develop hybrid nano-vesicles for drug delivery. Attention is finally given to the hybridization benefits in overcoming the biological barriers for drug delivery. It is believed that the advent of modern nano-formulations for multifunctional hybrid carriers paves the way for future advances to achieve more efficient drug delivery systems.

Graphical abstract: Nanomaterials engineering for drug delivery: a hybridization approach

Article information

Article type
Review Article
Submitted
19 Dec 2016
Accepted
25 Apr 2017
First published
23 May 2017

J. Mater. Chem. B, 2017,5, 3995-4018

Nanomaterials engineering for drug delivery: a hybridization approach

M. R. Mohammadi, A. Nojoomi, M. Mozafari, A. Dubnika, M. Inayathullah and J. Rajadas, J. Mater. Chem. B, 2017, 5, 3995 DOI: 10.1039/C6TB03247H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements