Issue 48, 2017

An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability

Abstract

Rubbers are widely applied in tires, seals, biomedical materials and aerospace applications because of their unique high elasticity. However, combining high self-healing capability and excellent mechanical performance in a rubber remains a formidable challenge. In this work, inspired by the energy dissipation mechanism and the recoverability of sacrificial bonds, the authors describe a dual-dynamic network design of a high-performance elastomer in which weaker multiple hydrogen bonds and stronger Zn–triazole coordination have been engineered into an unvulcanized cis-1,4-polyisoprene (IR) matrix. Accordingly, the elastomer obtains high tensile strength (21 MPa) and toughness (60 MJ m−3). The facilitated chain orientation in such a dual-dynamic network is finely substantiated by the molecular dynamics simulation results. Significantly, this dual-dynamic network design enables a fully cut elastomer to be healed at mild temperature. Under healing at 80 °C for 24 h, the healed elastomer regains excellent mechanical properties (tensile strength of 15.5 MPa and fracture energy of 42.8 MJ m−3). We envision that this design concept can not only develop a new network construction method in rubbers instead of vulcanization, but also provide inspiration for preparing advanced elastomers with the combination of excellent mechanical performance and high self-healing capability.

Graphical abstract: An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2017
Accepted
23 Nov 2017
First published
05 Dec 2017

J. Mater. Chem. A, 2017,5, 25660-25671

An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability

J. Liu, J. Liu, S. Wang, J. Huang, S. Wu, Z. Tang, B. Guo and L. Zhang, J. Mater. Chem. A, 2017, 5, 25660 DOI: 10.1039/C7TA08255J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements