Issue 29, 2017

Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3

Abstract

In the search for high energy density battery materials, over-lithiated transition metal oxides have attracted the attention of many researchers worldwide. There is, however, no consensus regarding the underlying mechanisms that give rise to the large capacities and also cause the electrochemical degradation upon cycling. As a key component and prototype phase, Li2MnO3 is investigated using density functional theory. Our calculations show that hole doping into the oxygen bands is the primary charge compensation mechanism in the first stage of delithiation. Upon further delithiation, there is an energetic driving force for peroxide formation with an optimal number of peroxide dimers that is predicted as a function of lithium concentration. Unlike the defect-free phases, the peroxide structures are highly stable, which leads to two competing mechanisms for charge compensation: (i) oxygen loss and densification at the surface and (ii) peroxide formation in the bulk. Our results show that both have a detrimental effect on the electrochemical performance and therefore the stabilization of oxygen in the crystal lattice is vital for the development of high energy cathode materials. The insights into the origin and implications of peroxide formation open the door for a more profound understanding of the degradation mechanism and how to counteract it.

Graphical abstract: Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3

Article information

Article type
Paper
Submitted
13 May 2017
Accepted
03 Jul 2017
First published
03 Jul 2017

J. Mater. Chem. A, 2017,5, 15183-15190

Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3

A. Marusczyk, J. Albina, T. Hammerschmidt, R. Drautz, T. Eckl and G. Henkelman, J. Mater. Chem. A, 2017, 5, 15183 DOI: 10.1039/C7TA04164K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements