Issue 30, 2017

1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability

Abstract

In this work is reported the successful synthesis of 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 (N-NCM), preferentially exposing the {010} electrochemically active facets. The material is obtained via a precipitation process followed by a calcination step. Upon calcination at 800 °C, the material delivers a high initial reversible capacity of 177.1 mA h g−1 at 0.1C, while at higher current densities (1C, 2C, 5C and 10C), it still delivers 152.8, 141.7, 122.7 and 104.2 mA h g−1, respectively. After 100 cycles, the material exhibits high capacity retention values, ca. 91% (0.1C) and 94% (10C). The good electrochemical performance is attributed to the synthesis design strategy leading to 1D nanobars with exposed {010} electrochemically active facets, which provide a more open structure for unimpeded Li+ migration. In addition, the diffusion pathway of lithium ions is greatly reduced because of the nano-sized bar shape. All these factors play a decisive role in achieving significantly enhanced lithium ion diffusivity, and thus superior high C-rate capability and greatly improved long-term cycling stability.

Graphical abstract: 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2017
Accepted
02 Jul 2017
First published
05 Jul 2017

J. Mater. Chem. A, 2017,5, 15669-15675

1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability

Z. Chen, D. Chao, J. Liu, M. Copley, J. Lin, Z. Shen, G. Kim and S. Passerini, J. Mater. Chem. A, 2017, 5, 15669 DOI: 10.1039/C7TA02888A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements