Jump to main content
Jump to site search

Issue 4, 2017
Previous Article Next Article

Mixed-valence NaSb3O7 support toward improved electrocatalytic performance in the oxygen-reduction reaction

Author affiliations

Abstract

Nanocrystals of sodium antimony oxide, NaSb3O7 (pyrochlore structure, a = 1.030 nm), act as an efficient catalyst support for the electrocatalytic oxygen-reduction reaction (ORR) in acidic media. The NaSb3O7 nanocrystals (edge length ∼ 150 nm) were synthesized by hydrothermal decomposition of SbCl5 in aqueous solution of NaOH. The NaSb3O7 nanocrystals were then decorated with Pt nanoparticles by chemical reduction of H2PtCl6 in water to yield an ORR catalyst, Pt/NaSb3O7. The Pt/NaSb3O7 exhibited higher ORR performance than the state-of-the-art Pt/TiO2- or Pt/C catalysts in terms of the +40 mV higher half-wave reduction potential and the retained electrochemical surface area than the Pt/TiO2 after 10 000-times repeated ORR in an acidic electrolyte. Unlike NaSb3O7, Pt-decorated Sb2O5 (Pt/Sb2O5) was much less active than the Pt/TiO2 or Pt/C. The enhanced ORR activity of the Pt/NaSb3O7 may be attributed to the promoted electron hopping between the Sb3+ and Sb5+ ions in mixed-valence Na1+(Sb3+Sb25+)O7, which is inhibited in single-valence Sb25+O5.

Graphical abstract: Mixed-valence NaSb3O7 support toward improved electrocatalytic performance in the oxygen-reduction reaction

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Oct 2016, accepted on 13 Dec 2016 and first published on 13 Dec 2016


Article type: Paper
DOI: 10.1039/C6TA08624A
Citation: J. Mater. Chem. A, 2017,5, 1667-1671
  •   Request permissions

    Mixed-valence NaSb3O7 support toward improved electrocatalytic performance in the oxygen-reduction reaction

    K. R. Deepthi, G. V. Ramesh, R. Kodiyath, P. S. Murphin Kumar, A. Dakshanamoorthy and H. Abe, J. Mater. Chem. A, 2017, 5, 1667
    DOI: 10.1039/C6TA08624A

Search articles by author

Spotlight

Advertisements