Issue 41, 2017

Influence of lipid composition of model membranes on methacrylate antimicrobial polymer–membrane interactions

Abstract

Using atomistic molecular dynamics simulations, the role of lipid composition in the interactions of multiple methacrylate antimicrobial polymer agents with model membranes, and the consequent response of the membranes is studied. In our earlier study, methacrylate polymers were observed to induce phase demixing and associated thickness mismatch in a POPE–POPG model microbial membrane. In this work, we probe (1) the role of varying the degree of saturation in lipid acyl chains in the membrane interactions of methacrylate polymers, and (2) whether electrostatics (addition of anionic lipids) can influence the interactions of the polymers with model mammalian membranes. Lipid composition is observed to significantly modify membrane–polymer interactions, leading to differences in both the mode of partitioning and the conformations adopted by the polymers, in addition to impacting membrane properties differently. The results strongly suggest that the oft-cited electrostatic interactions between the antimicrobial agents and the microbial membranes do not fully account for the recognition and subsequent partitioning of the antimicrobial agents. The ability of the methacrylate polymers to sense interfacial lipid packing defects, determined by the PE/PC head groups of lipids, is also found to be influential in their membrane partitioning. Deliberate inclusion of charged anionic lipids into a model mammalian membrane, leading to additional favorable electrostatics, does not reproduce a similar polymer partitioning mechanism to that in its microbial counterpart. The differences observed in the interactions of methacrylate polymers with the various model membranes can be instrumental in extending our understanding of underlying modes of membrane disruption by general antimicrobial agents as well.

Graphical abstract: Influence of lipid composition of model membranes on methacrylate antimicrobial polymer–membrane interactions

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2017
Accepted
22 Sep 2017
First published
25 Sep 2017

Soft Matter, 2017,13, 7665-7676

Influence of lipid composition of model membranes on methacrylate antimicrobial polymer–membrane interactions

U. Baul and S. Vemparala, Soft Matter, 2017, 13, 7665 DOI: 10.1039/C7SM01211J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements