Issue 28, 2017

Poynting and reverse Poynting effects in soft materials

Abstract

In 1909, J. H. Poynting conducted a series of experiments on metal wires and found that loaded wires lengthen when twisted. Thus to maintain a constant length in such experiments, a compressive axial force would need to be applied at the ends of the specimen. This is the classical (positive) Poynting effect. Another example of such an effect arises when a soft material specimen is being axially sheared or rotated between two platens. The necessity to apply a normal force in order to maintain the relative distance between the platens is also often referred to as a Poynting-type effect. Both effects are inherently nonlinear phenomena. In recent papers, experimental data on the Poynting effect in soft solids have been reported. The seminal paper by Janmey et al. describes shearing experiments on hydrogels, impregnated with scleroproteins such as collagen and fibrin. It was shown that positive and negative (reverse) Poynting effects could occur. In this and subsequent papers by several authors, the microstructure of reinforced biogels involving semi-flexible filaments embedded in a soft matrix was exploited to examine the character of the normal stresses. The purpose of the present paper is to describe and review an alternative approach using the macroscopic phenomenological theory of hyperelasticity based on nonlinear continuum mechanics. Our aim is to demonstrate that such a theory can be used in a very transparent way to predict the occurrence of both positive and negative Poynting effects in anisotropic soft fibrous materials. It will be seen that material anisotropy plays a key role in the analysis.

Graphical abstract: Poynting and reverse Poynting effects in soft materials

Article information

Article type
Paper
Submitted
18 May 2017
Accepted
30 Jun 2017
First published
03 Jul 2017

Soft Matter, 2017,13, 4916-4923

Poynting and reverse Poynting effects in soft materials

C. O. Horgan and J. G. Murphy, Soft Matter, 2017, 13, 4916 DOI: 10.1039/C7SM00992E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements