Modeling of the formation kinetics and size distribution evolution of II–VI quantum dots†
Abstract
A deterministic model based on population balance equations is developed to describe the formation of II–VI semiconductor nanocrystals. After deriving the necessary equations and reviewing the link between model predictions and experimental results, a parametric study is carried out to showcase the model's features. A comparison with literature experimental data shows how the present model can satisfactorily describe average properties of the colloidal semiconductor nanocrystals such as the average diameter or the distribution width. This model represents a first step towards the development of more refined models that would open up the possibility of improved optimization and control of the nanocrystal production process.